Abstract
Calculation of the modulation transfer function (MTF) is a multi-step procedure. At each step in the calculation, the algorithms can have intrinsic errors which are independent of the imaging system or physics. We designed a software tool with a graphical user interface to facilitate calculation of MTF and the analysis of accuracy in those calculations. To minimize the source of errors, simulated edge images without any noise or artifacts were used. We first examined the accuracy of a commonly used edge-slope estimation algorithm; namely line-by-line differentiation followed by a linear regression fit. The influence of edge length and edge phase on the linear regression algorithm is demonstrated. Furthermore, the relationship of edge-slope estimation error and MTF error are illustrated. We compared the performance of two kernels, [-1,1] and [-1,0,1], in the computation of the line spread function (LSF) from finite element differentiation of the edge spread function (ESF). We found that there is no practical advantage in choosing the [-1,0,1] kernel, as recommended by IEC. However, a correction for finite element differentiation should be applied; otherwise, there is a measurable error in the MTF. Finally, we added noise into the edge images and compared the performance of two noise reduction methods on the ESF; convolution with a boxcar kernel and a monotonicity constraint. The former method always produces MTF error higher than 4% up to the sampling frequency, while the latter was consistently less than 1%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.