Abstract
Software bugs are common and correcting them accounts for a significant part of costs in the software development and maintenance process. This calls for automatic techniques to deal with them. One promising direction towards this goal is gaining repair knowledge from historical bug fixing examples. Retrieving insights from software development history is particularly appealing with the constant progress of machine learning paradigms and skyrocketing `big' bug fixing data generated through Continuous Integration (CI). In this paper, we present R-Hero, a novel software repair bot that applies continual learning to acquire bug fixing strategies from continuous streams of source code changes, implemented for the single development platform Github/Travis CI. We describe R-Hero, our novel system for learning how to fix bugs based on continual training, and we uncover initial successes as well as novel research challenges for the community.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.