Abstract
Planning under partial observability is both challenging and critical for reliable robot operation. The past decade has seen substantial advances in this domain: The mathematically principled approach for addressing such problems, namely the Partially Observable Markov Decision Process (POMDP), has started to become practical for various robotics tasks. Good approximate solutions for problems framed as POMDPs can now be computed on-line, with a few classes of problems being solved in near real-time. However, applications of these more recent advances are often hindered by the lack of easy-to-use software tools. Implementation of state of the art algorithms exist, but most (if not all)require the POMDP model to be hard-coded inside the program, increasing the difficulty of applying them. To alleviate this problem, we propose a software toolkit, called On-line POMDP Planning Toolkit (OPPT)(downloadable from http://robotics.itee.uq.edu.au/~oppt). By providing a well-defined and general abstract solver API, OPPT enables the user to quickly implement new POMDP solvers. Furthermore, OPPT provides an easy-to-use plug-in architecture with interfaces to the high-fidelity simulator Gazebo that, in conjunction with user-friendly configuration files, allows users to specify POMDP models of a standard class of robot motion planning under partial observability problems with no additional coding effort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.