Abstract
Ever since the FCC approved the use of UWB devices in commercial and federal bands, various agencies whose operations and/or products rely on the integrity of signals within certain restricted radio frequency bands have voiced concerns over the potential impact of the UWB interference. GPS signals are among these restricted bands. Several groups in the GPS community have conducted experimental studies concerning the impact of UWB interference on the performance of various grades of commercial and aviation GPS receivers. In this paper, we present a software approach to simulate and evaluate UWB interference on GPS receivers. The software approach provides greater flexibility in the design of testing scenarios, such as the inclusion of a large number of aggregated UWB devices, the generation of new UWB signals and modulation schemes, and the possibility of extending the study to new GPS signals. The paper will discuss a general framework for developing algorithms to evaluate UWB and GPS interference under a wide variety of hardware and software conditions. This framework consists of three classes of components: Input, Processing, and Analysis. The input components are responsible for the generation of current UWB signal waveforms, UWB signal modulation schemes, and various forms of GPS signals. The processing components include a simulated model of GPS RF front end and software implementation of GPS processing blocks, such as acquisition, tracking, and post-processing. The Analysis components focus on the study of specific receiver processing component outputs. Both real and simulated UWB signals can be used in the study. The real UWB signals are primarily used to validate the simulation procedure, whereas the simulated UWB signals are used to allow the immediate incorporation of new UWB waveforms and modulations in the evaluations. The paper will present details of the software components developed and the preliminary results obtained to date.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.