Abstract

The state-of-the-art in information and robotic systems deals with analyzing of natural systems at nanoscale to apply them for constructing potential bio-nanosystems. This paper employs agent technology and introduces a software agent model of muscle myosin nanomotor which illustrates a set of information processes which are running during the mechanism of the nanomotor. Muscle myosin, as a desired dynamic component of potential bio-nanorobotic systems, is the driven motor of muscle contractions. In this work, firstly, muscle myosin nanomotor was introduced as a physical intelligent agent. Then, we have designed the internal decision-making process of the nanomotor using subsumption architecture of agent technology. The agent-based architectural model of the nanomotor was proposed with mapping the subsumption rules of the nanomotor to its respective Deterministic Finite Automaton (DFA). The proposed agent-based architectural DFA model of muscle myosin nanomotor demonstrated that the nanomotor could receive inputs from its environment, analyze data, and generate outputs. Also, the proposed agent-based architectural DFA model of muscle myosin nanomotor was in good agreement with the behavior of the nanomotor inside the muscle cells. Finally, the proposed agent-based architectural DFA model was implemented as a software agent model of the nanomotor. The developed software agent model of muscle myosin nanomotor traced the real behavior of the nanomotor in nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call