Abstract

Soft-Input Soft-Output (SISO) polar decoding algorithms, such as Belief Propagation (BP) and Soft Cancellation (SCAN) polar decoding, offer iteration capability for facilitating turbo-style detection. However, at lower Signal-to-Noise Ratios (SNRs), the performance of the BP and SCAN decoders is about 1.5 dB and 0.5 dB worse than that of the state-of-the-art hard-decision Successive Cancellation List (SCL) decoding algorithm, respectively, despite iteratively exchanging information with a Multiple Input Multiple Output (MIMO) detector. Motivated by this gap, we conceive a novel G-SCAN polar decoder, which generates both soft-decision and hard-decision outputs. This is achieved by intrinsically amalgamating a list decoder with a novel SISO decoder. These soft-decision outputs may be used for turbo-detection, but they also support the hard-decision outputs of the SCL algorithm for achieving superior block error rate (BLER) performance. As a result of these benefits, the proposed G-SCAN algorithm using a list size of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$L = 2$</tex-math></inline-formula> offers around 1 dB BLER gain compared to the conventional hard-decision SCL decoder relying on <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$L = 32$</tex-math></inline-formula> . Furthermore, we have carried out its Extrinsic Information Transfer (EXIT) chart analysis, and characterized the performance vs. the complexity of the proposed G-SCAN algorithm, and compared it to various soft- and hard-decision output benchmarks for a wide variety of different rate-matching modes and block lengths. Furthermore, in order to reduce the complexity of the proposed algorithm, a novel Cyclic Redundancy Check (CRC)-aided G-SCAN algorithm is also proposed, which facilitates early termination and improves the BLER performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call