Abstract
The AC/AC single-phase/single-phase Modular Multilevel Converter (MMC) presents very interesting features for the realization of a Medium Frequency Power Electronic Transformer for traction applications, in AC-fed or multisystem railway rolling stock, like locomotives, Electric Multiple Units (EMU), high-speed units, and so on. Aiming to maximize the output frequency of the converter, i.e. the operating frequency of the medium frequency transformer (m.f.t.) and/or to maximize the conversion efficiency, in this paper a proposal is presented, exploiting the opportunities offered by known soft-switching topologies. Simulation results fully validate this idea: in each MMC converter's submodule the H-bridge main semiconductor devices commutate in Zero-Voltage Switching (ZVS) conditions, with so much reduced losses that the switching frequency can be pushed-up toward unimaginable levels respect the classical hard-switching commutation, using usual silicon devices. More, the whole MMC converter operation remains substantially the same, because the soft-switching behaviour inside the single submodules does non disturb the operation of the overall MMC. The negative aspect is that the soft switching solution implies an appreciable increase in the overall amount of active and passive components, with obvious reflections on the reliability and costs issues. This article will discuss this theme with particular regard to the effects of simulation, loss assessment and power semiconductor sizing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.