Abstract

In recent years, data-driven soft sensor modeling methods have been widely used in industrial production, chemistry, and biochemical. In industrial processes, the sampling rates of quality variables are always lower than those of process variables. Meanwhile, the sampling rates among quality variables are also different. However, few multi-input multi-output (MIMO) sensors take this temporal factor into consideration. To solve this problem, a deep-learning (DL) model based on a multitemporal channels convolutional neural network (MC-CNN) is proposed. In the MC-CNN, the network consists of two parts: the shared network used to extract the temporal feature and the parallel prediction network used to predict each quality variable. The modified BP algorithm makes the blank values generated at unsampled moments not participate in the backpropagation (BP) process during training. By predicting multiple quality variables of two industrial cases, the effectiveness of the proposed method is verified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.