Abstract
A novel soft-sensing method for quality parameters of aviation kerosene in atmospheric distillation column based on least absolute shrinkage and selection operator and particle swarm optimization deep belief network (LASSO-PSO-DBN) is proposed. First, to reduce the dimension of the input variables, the least absolute shrinkage and selection operator (LASSO) algorithm is used to select the input variables that are irrelevant to the soft sensor of aviation kerosene quality parameters. Then, to improve the generalization of soft sensor model, a deep learning algorithm, deep belief network (DBN), is proposed for soft sensing of aviation kerosene quality parameters. Considering that the structure characteristics and parameters of DBN algorithm have a great impact on the learning and prediction results, the parameters of DBN are optimized based on particle swarm optimization (PSO) algorithm. The benchmark data sets and the industrial atmospheric distillation column data are used for simulation analysis and evaluation of the soft-sensing performance. The simulation results show that the novel proposed algorithm can effectively reduce the dimension of the input variables and simplify the structure of the soft sensor model. It also has good generalization ability and the predicted value is in good agreement with the actual measured value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Institute of Measurement and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.