Abstract
This paper proposes a framework for soft real-time text classification system, which use control theory as a scientific underpinning, rather than ad hoc solutions. In order to provide real-time guarantee, two control loops are adopted. The feed forward control loop estimates the suitable number of classifiers according to the current workload, while the feedback control loop provides fine-grained control to the number of classifiers that perform imprecise computation. The soft real-time classification system can accommodate to the change of workload and transitional overload. The theory analysis and experiments result further prove its effectiveness: the variation range of the average response time is kept within ± 3% of the desired value; the computational resource is dynamically reallocated and reclaimed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.