Abstract
Side effects caused by excessive contact pressure such as discomfort and pressure sores are commonly complained by patients wearing orthoses. These problems leading to low patient compliance decrease the effectiveness of the device. To mitigate side effects, this study describes the design and fabrication of a soft sensor skin with strategically placed 12 sensor units for static contact pressure measurement beneath a hand and wrist orthosis. A Finite Element Model was built to simulate the pressure on the hand of a subject and sensor specifications were obtained from the result to guide the design. By testing the fabricated soft sensor skin on the subject, contact pressure between 0.012 MPa and 0.046 MPa was detected, revealing the maximum pressure at the thumb metacarpophalangeal joint which was the same location of the highest pressure of simulation. In this letter, a new fabrication method combining etching and multi-material additive manufacture was introduced to produce multiple sensor units as a whole. Furthermore, a novel fish-scale structure as the connection among sensors was introduced to stabilize sensor units and reinforce the soft skin. Experimental analysis reported that the sensor signal is repeatable, and the fish-scale structure facilitates baseline resuming of sensor signal during relaxation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.