Abstract
Despite lacking jaws and substantial rigid support for feeding muscles, hagfishes can forcefully grasp and ingest chunks of flesh from their prey. When feeding, bilaterally folding dental plates protrude from the mouth, then forcefully retract. This cyclic protraction and retraction occurs in the anterior region of the hagfish feeding apparatus (HFA) and involves both a cartilaginous skeleton and a complex array of muscles that act as a hydrostat. We recorded motor patterns from the largest muscles in the HFA in six specimens of Myxine glutinosa: the deep protractor muscle (DPM), clavatus muscle (CM), perpendicularis muscle (PM), and tubulatus muscle (TM). Individuals normally used four gape cycles to ingest food and four gape cycles to intraorally transport food. We measured burst duration from each muscle and the onsets of kinematic events and the onsets of CM, PM, and TM bursts relative to the onset of the DPM. The DPM fired during protraction, while the CM, PM and TM fired during retraction. Our study corroborates our anatomical predictions about DPM and CM function. Activation of the circumferentially and vertically oriented fibers of the TM and PM stiffens the origin of the CM, allowing it to forcefully retract the dental plates. The progressive decrease in retractor muscle activity during gape cycles following ingestion suggests a reliance on passive properties of the musculoskeletal system for retraction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.