Abstract

The suppression of spike noise and wide adjacent track erasure (WATE) are important technical issues in the development of a perpendicular recording medium (PRM). As a solution to both of these problems, this paper presents a type of soft magnetic underlayer (SUL) with negative uniaxial perpendicular magnetic anisotropy. The magnetic anisotropy is achieved by employing a material with negative uniaxial magnetocrystalline anisotropy (Kugrain). WATE is suppressed in the SUL by realizing wide distribution of magnetic flux below the edge of the return yoke, while spike noise is eliminated by ensuring the formation of a Néel wall instead of a Bloch wall in SUL domains. CoIr with the disordered hcp structure is selected as a negative Kugrain material, and c-plane-oriented CoIr films with various Ir contents are prepared for experimental evaluation. Among the films tested, the CoIr film with 22at.% Ir is found to provide the minimum Kugrain value of −6×106ergs∕cm3. Under a field applied parallel to the film plane, this film exhibits soft magnetic properties, attributable to the high crystallographic symmetry of the c-plane sheet texture. A PRM fabricated using the CoIr SUL is confirmed to display substantially lower spike noise and WATE compared to conventional structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call