Abstract

In an adaptive or non-cooperative communication system, the blind identification of channel coding is an indispensable procedure for recovering the message from the intercepted coding data. Due to the wide applications of convolutional codes, the blind identification problem of convolutional codes has also received extensive studies. In this paper, we consider the blind identification problem of convolution encoder parameters in the general <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k/n$ </tex-math></inline-formula> rate case. To improve the blind identification accuracy of existing hard decision based solutions, a novel soft information based blind identification algorithm is designed in this paper. Specifically, a Soft Gaussian-Jordan Elimination Through Pivoting (Soft-GJETP) algorithm is firstly proposed to calculate the rank of the received data matrix. In contrast to the existing hard decision based GJETP algorithm, this Soft-GJETP algorithm formulates the soft information of the received data, then defines three reliability metrics and derives updating rules for this soft information. In this way, the diagonals of the received data matrix have fewer errors in Soft-GJETP algorithm. Furthermore, a soft decision strategy is proposed with a weight-dependent threshold. Employing this strategy, the dependent columns can be distinguished with higher accuracy. Finally, simulation results and comparisons are given to illustrate the performances of our proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.