Abstract
In this letter, we present a speech enhancement technique based on the ambient noise classification incorporating the Gaussian mixture model (GMM). The principal parameters of the statistical model-based speech enhancement algorithm such as the weighting parameter in the decision-directed (DD) method and the long-term smoothing parameter of the noise estimation, are chosen as different values according to the classified contexts to ensure best performance for each noise. For the real-time environment awareness, the noise classification is performed on a frame-by-frame basis using the GMM with the soft decision framework. Thespeechabsenceprobability(SAP)isusedindetecting the speech absence periods and updating the likelihood of the GMM. Index Terms: Speech Enhancement, Noise Classification, Soft Decision, Gaussian Mixture Model
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.