Abstract

In practical model predictive control (MPC) implementations, constraints on the states are typically softened to ensure feasibility despite unmodeled disturbances. In this work, we propose a soft constrained MPC formulation supporting polytopic terminal sets in half-space and vertex representation, which significantly increases the feasible set while maintaining asymptotic stability in case of constraint violations. The proposed formulation allows for leveraging system trajectories that violate state constraints to iteratively improve the MPC controller's performance. To this end, we apply convex optimization techniques to obtain a data-driven terminal cost and set, which result in a quadratic MPC problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.