Abstract

This article presented a four-fingered soft bionic robotic gripper with variable effective actuator lengths. By combining approaches of finite element analysis, quasi-static analytical modeling, and experimental measurements, the deformation of the single soft actuator as a function of air pressure input in free space was analyzed. To investigate the effect of the effective actuator length on the gripping performance of the gripper, we conducted systematical experiments to evaluate the pull-off force, the actuation speed, the precision and error tolerance of the soft gripper while grasping objects of various sizes and shapes. A combination of depressurization and pressurization in actuation as well as applying variable effective actuator length enhanced the gripper’s performance significantly, with no sensors. For example, with tunable effective actuator length, the gripper was able to grasp objects ranging from 2 mm – 170 mm robustly. Under the optimal length, the gripper could generate the maximum pull-off force for the corresponding object size; the precision and the error tolerance of the gripper were also significantly improved compared to those of the gripper with full-length. Our soft robotic prototype exhibits a simple control and low-cost approach of gripping a wide range of objects and may have wide leverage for future industrial operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.