Abstract

Hydrogen produced from neutral seawater electrolysis faces many challenges including high energy consumption, the corrosion/side reactions caused by Cl-, and the blockage of active sites by Ca2+/Mg2+ precipitates. Herein, we design a pH-asymmetric electrolyzer with a Na+ exchange membrane for direct seawater electrolysis, which can simultaneously prevent Cl- corrosion and Ca2+/Mg2+ precipitation and harvest the chemical potentials between the different electrolytes to reduce the required voltage. In-situ Raman spectroscopy and density functional theory calculations reveal that water dissociation can be promoted with a catalyst based on atomically dispersed Pt anchored to Ni-Fe-P nanowires with a reduced energy barrier (by 0.26 eV), thus accelerating the hydrogen evolution kinetics in seawater. Consequently, the asymmetric electrolyzer exhibits current densities of 10 mA cm−2 and 100 mA cm−2 at voltages of 1.31 V and 1.46 V, respectively. It can also reach 400 mA cm−2 at a low voltage of 1.66 V at 80 °C, corresponding to the electricity cost of US$1.36 per kg of H2 ($0.031/kW h for the electricity bill), lower than the United States Department of Energy 2025 target (US$1.4 per kg of H2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.