Abstract

Mutations of the voltage gated sodium channel gene (SCN4A) are responsible for non-dystrophic myotonia including hyperkalemic periodic paralysis, paramyotonia congenita, and sodium channel myotonia, as well as congenital myasthenic syndrome. In vitro functional analyses have demonstrated the non-dystrophic mutants to show a gain-of-function defect of the channel; a disruption of fast inactivation, an enhancement of activation, or both, while the myasthenic mutation presents a loss-of function defect. This report presents a case of non-dystrophic myotonia that is incidentally accompanied with acquired myasthenia. The patient presented a marked warm-up phenomenon of myotonia but the repeated short exercise test suggested mutations of the sodium channel. The genetic analysis identified a novel mutation, G1292D, of SCN4A. A functional study of the mutant channel revealed marked enhancement of activation and slight impairment of fast inactivation, which should induce muscle hyperexcitability. The effects of the alteration of channel function to the myasthenic symptoms were explored by using stimulation of repetitive depolarization pulses. A use-dependent channel inactivation was reduced in the mutant in comparison to normal channel, thus suggesting an opposing effect to myasthenia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.