Abstract

Community structure, including relationships between and within groups, is foundational to our understanding of the world around us. For dissimilarity-based data, leveraging social concepts of conflict and alignment, we provide an approach for capturing meaningful structural information resulting from induced local comparisons. In particular, a measure of local (community) depth is introduced that leads directly to a probabilistic partitioning conveying locally interpreted closeness (or cohesion). A universal choice of threshold for distinguishing strongly and weakly cohesive pairs permits consideration of both local and global structure. Cases in which one might benefit from use of the approach include data with varying density such as that arising as snapshots of complex processes in which differing mechanisms drive evolution locally. The inherent recalibrating in response to density allows one to sidestep the need for localizing parameters, common to many existing methods. Mathematical results together with applications in linguistics, cultural psychology, and genetics, as well as to benchmark clustering data have been included. Together, these demonstrate how meaningful community structure can be identified without additional inputs (e.g., number of clusters or neighborhood size), optimization criteria, iterative procedures, or distributional assumptions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call