Abstract

BackgroundSri Lanka has witnessed a series of dengue epidemics over the past five years, with the western province, home to the political capital of Colombo, bearing more than half of the dengue burden. Existing dengue monitoring prevention programs are exhausted as public health inspectors (PHIs) cope with increasing workloads and paper-based modes of surveillance and education, characterizing a reactive system unable to cope with the enormity of the problem. On the other hand, the unprecedented proliferation and affordability of mobile phones since 2009 and a supportive political climate have thus far remained unexploited for the use of mobile-based interventions for dengue management.ObjectiveTo conduct a needs assessment of PHIs in Colombo with respect to their dengue-related tasks and develop a new mobile-based system to address these needs while strengthening existing systems.MethodsOne-on-one in-depth interviews were conducted with 29 PHIs to a) gain a nuanced, in-depth understanding of the current state of surveillance practices, b) understand the logistical, technological and social challenges they confront, and c) identify opportunities for mobile-based interventions. Quantitative analysis included simple descriptive statistics while qualitative analysis comprised textual analysis of 209 pages of transcripts (or nearly 600 minutes of conversations) using grounded theory approaches.ResultsCurrent paper-based data collection practices for dengue surveillance involved a circuitous, time consuming process that could take between 7-10 days to officially report and record a single case. PHIs confronted challenges in terms of unreliable, standalone GIS devices, delays in registering mosquito breeding sites and lack of engagement from communities while delivering dengue education. These findings, in concert with a high motivation to use mobile-based systems, informed the development of Mo-Buzz, a mobile-based system that integrates three components – digitized surveillance, dynamic disease mapping and digitized dengue education – on a common platform. The system was developed through an iterative, evolutionary, collaborative process, consistent with the Spiral model of software development and is currently being used by all 55 PHIs in the CMC system.ConclusionsGiven the entrenched nature of existing paper-based systems in PHIs’ work habits, we expect a gradual adoption curve for Mo-Buzz in the future. Equally, we expect variable adoption of the system with respect to its specific components, and specific PHI sub-groups (younger versus older). The Mo-Buzz intervention is a response to multiple calls by the global mHealth community for collaborations in the area of mobile interventions for global health. Our experience revealed that the benefits of this paradigm lies in alleviating country-specific public health challenges through a commonly shared understanding of cultural mores, and sharing of knowledge and technologies. We call upon future researchers to further dissect the applicability of the Spiral Model of software development to mHealth interventions and contribute to the mHealth evidence debate from theoretical and applied perspectives.

Highlights

  • Dengue, the vector borne disease that threatens the lives of millions of people in tropical countries, has severely affected Sri Lanka in the past 2 decades

  • The system was developed through an iterative, evolutionary, collaborative process, consistent with the Spiral model of software development and is currently being used by all 55 Public Health Inspector (PHI) in the Colombo Municipal Council (CMC) system

  • The PHIs reported that better technology would strengthen their ability to track and report (M=4.69, SD=.71) dengue cases more efficiently and make it easier for them to identify new mosquito breeding sites (M=4.28, SD=.92)

Read more

Summary

Introduction

The vector borne disease that threatens the lives of millions of people in tropical countries, has severely affected Sri Lanka in the past 2 decades. In 2014, the country reported nearly 40,000 dengue cases, a level of burden that has been consistent over the past few years [1]. Given that the severity of dengue outbreaks has failed to abate, Sri Lanka, and the capital city of Colombo, grapples with an exhausted dengue outbreak management system. Sri Lanka has witnessed a series of dengue epidemics over the past five years, with the western province, home to the political capital of Colombo, bearing more than half of the dengue burden. Existing dengue monitoring prevention programs are exhausted as public health inspectors (PHIs) cope with increasing workloads and paper-based modes of surveillance and education, characterizing a reactive system unable to cope with the enormity of the problem. The unprecedented proliferation and affordability of mobile phones since 2009 and a supportive political climate have far remained unexploited for the use of mobile-based interventions for dengue management

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call