Abstract

Non-pharmacological interventions (NPI) such as social distancing and lockdown are essential in preventing and controlling emerging pandemic outbreaks. Many countries worldwide implemented lockdowns during the COVID-19 outbreaks. However, due to the lack of prior experience and knowledge about the pandemic, it is challenging to deal with short-term polices decision-making due to the highly stochastic and dynamic nature of the COVID-19. Thus, there is a need for the exploration of policy decision analysis to help agencies to adjust their current policies and adopt quickly. In this study, an analytical methodology is developed to analysis urban transport policy response for pandemic control based on social media data. Compared to traditional surveys or interviews, social media can provide timely data based on the feedback from public in terms of public demands, opinions, and acceptance of policy implementations. In particular, a sentiment-aware pre-trained language model is fine-tuned for sentiment analysis of policy. The Latent Dirichlet Allocation (LDA) model is used to classify documents, e.g., posts collected from social media, into specific topics in an unsupervised manner. Then, entropy weights method (EWM) is used to extract public policy demands based on the classified topics. Meanwhile, a Jaccard distance-based approach is proposed to conduct the response analysis of policy adjustments. A retrospective analysis of transport policies during the COVID-19 pandemic in Wuhan, China is presented using the developed methodology. The results show that the developed policymaking support methodology can be an effective tool to evaluate the acceptance of anti-pandemic policies from the public's perspective, to assess the balance between policies and people’s demands, and to further perform the response analysis of a series of policy adjustments based on online feedback.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.