Abstract

ABSTRACTThe widespread use of Internet has accelerated the explosive growth of data, which in turn leads to information overload and information confusion. This makes it difficult for us to communicate effectively in social groups, thereby intensifying the demands for emotional companionship. Therefore, we propose a novel social group chatting framework based on Large Language Model (LLM) powered multiple autonomous agents collaboration in this article. Specifically, BERTopic is used to extract topics from history chatting content for each social group everyday, and then multiple topics tracking is realised through multi‐level association by adaptive time sliding‐window mechanism and optimal matching. Furthermore, we use topic tracking architecture and prompts to design and implement an AI Chatbot system with different characters that can conduct natural language conversations with users in online social group. LLM, as the controller and coordinator of the whole AI Chatbot for sub‐tasks, allows different AI Agents to autonomously decide whether to participate in current topic, how to generate response, and whether to propose a new topic. Each AI Agent has their own multi‐store memory system based on the Atkinson‐Shiffrin model. Finally, we construct a verification environment based on online game that is consistent with real society. Subjective and objective evaluation methods were deployed to perform qualitative and quantitative analyses to demonstrate the performance of our AI Chatbot system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.