Abstract

Metal additive manufacturing (AM) processes are very complex and the process parameters required to fabricate quality parts can be very complicated and challenging to determine. For this reason, there is a continuous demand for AM simulations which can assist users to determine optimal process parameters in a timely manner. However, current commercial simulation packages are expensive and not designed with AM processes in mind, which makes it challenging to simulate an AM process. In addition, they are computationally intensive and usually require some high performance computing (HPC) system to run effectively. Besides, they take relatively more time, usually from several days to months, to simulate an AM process. This paper presents additive manufacturing simulator (AMS), a simulation tool built specifically with AM processes in mind, to address the challenges with current AM simulation tools. AMS is based on a three-tier client-server architecture, coupled with service oriented architecture's (SOA) publication and subscription model. It has the ability to scale to utilize available computational resources and automatically balances computational resources among multiple processors. Compared with current AM simulation systems, AMS improves performance of AM simulation considerably and can run on not only HPC systems, but also low-cost desktop computers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call