Abstract

This paper presents a SNCCDBAGG-based neural network (NN) ensemble approach for quality prediction in injection molding process. Bagging is used to create NNs for the ensemble by independently training these NNs on different training sets. Negative correlation learning via correlation-corrected data (NCCD) is used to achieve negative correlation of each network's error against errors for the rest of the ensemble by training transformed target data for NN in the ensemble as the desired network output for some epochs. A selection-based strategy is proposed to improve generalization ability when combining Bagging and NCCD. Experimental results show its good performance on quality predicting in injection molding process compared with single NN predictor and NCCD predictor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.