Abstract

Oocyst formation is a critical stage in the development of the malaria parasite in the mosquito. We have discovered that the phospholipase A(2) (PLA2) from the venom of the eastern diamondback rattlesnake (Crotalus adamanteus) inhibits oocyst formation when added to infected chicken blood and fed to mosquitoes. A similar transmission-blocking activity was demonstrated for PLA2s from the venom of other snakes and from the honeybee. This effect is seen both with the avian malaria parasite Plasmodium gallinaceum and with the human parasite Plasmodium falciparum developing in their respective mosquito hosts. The inhibition occurs even in the presence of an irreversible inhibitor of the active site of PLA2, indicating that the hydrolytic activity of the enzyme is not required for the antiparasitic effect. Inhibition is also seen when the enzyme is fed to mosquitoes together with ookinetes, suggesting that the inhibition occurs after ookinete maturation. PLA2 has no direct effect on the parasite. However, pretreatment of midguts with PLA2 (catalytically active or inactive) dramatically lowers the level of ookinete/midgut association in vitro. It appears, therefore, that PLA2 is acting by associating with the midgut surface and preventing ookinete attachment to this surface. Thus, PLA2 is an excellent candidate for expression in transgenic mosquitoes as a means of inhibiting the transmission of malaria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.