Abstract
A Sn–SnS–C nanocomposite is prepared by simply mechanically ball-milling Sn, SnS and C powders. In this composite, Sn nanocrystals are surface-coated with SnS nanoparticles and uniformly dispersed in the carbon matrix. During discharge, the SnS particles undergo an electrochemical conversion reaction to generate Sn and Na2S nanocrystals and then the Sn particles alloy with Na to produce the NaSn alloy. The conversion reaction of SnS and the alloying reaction of Sn with Na are completely reversible, producing a very high reversible Na-storage capacity of >600 mA h g−1 at an appropriate low potential of ∼0.7 V. Since the SnS phase provides an effective buffering matrix to alleviate the volumetric change of the Sn particles during Na insertion and extraction, and also serves as a separator to prevent the aggregation of the Sn nanoparticles, the Sn–SnS–C composite anode demonstrates a very good cycling stability with 87% capacity retention over 150 cycles, possibly usable for Na-ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.