Abstract

Based on a reformulation of the complementarity problem as a system of nonsmooth equations by using the generalized Fischer-Burmeister function, a smoothing trust region algorithm with line search is proposed for solving general (not necessarily monotone) nonlinear complementarity problems. Global convergence and, under a nonsingularity assumption, local Q-superlinear/Q-quadratic convergence of the algorithm are established. In particular, it is proved that a unit step size is always accepted after a finite number of iterations. Numerical results also confirm the good theoretical properties of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.