Abstract

In this paper, we introduce a one-parametric class of smoothing functions which contains the Fischer–Burmeister smoothing function and the CHKS smoothing function as special cases. Based on this class of smoothing functions, a smoothing Newton algorithm is extended to solve linear programming over symmetric cones. The global and local quadratic convergence results of the algorithm are established under suitable assumptions. The theory of Euclidean Jordan algebras is a basic tool in our analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.