Abstract

A new smoothing method of global optimization is proposed in the present paper, which prevents shifting of global minima. In this method, smoothed functions are solutions of a heat diffusion equation with external heat source. The source helps to control the diffusion such that a global minimum of the smoothed function is again a global minimum of the cost function. This property, and the existence and uniqueness of the solution are proved using results in theory of viscosity solutions. Moreover, we devise an iterative equation by which smoothed functions can be obtained analytically for a class of cost functions. The effectiveness and potential of our method are then demonstrated with some experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.