Abstract
In this paper, the zero–one constrained extremum problem is reformulated as an equivalent smooth mathematical program with complementarity constraints (MPCC), and then as a smooth ordinary nonlinear programming problem with the help of the Fischer–Burmeister function. The augmented Lagrangian method is adopted to solve the resulting problem, during which the non-smoothness may be introduced as a consequence of the possible inequality constraints. This paper incorporates the aggregate constraint method to construct a uniform smooth approximation to the original constraint set, with approximation controlled by only one parameter. Convergence results are established, showing that under reasonable conditions the limit point of the sequence of stationary points generated by the algorithm is a strongly stationary point of the original problem and satisfies the second order necessary conditions of the original problem. Unlike other penalty type methods for MPCC, the proposed algorithm can guarantee that the limit point of the sequence is feasible to the original problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.