Abstract
Many problems in real world are reduced to systems of nonsmooth equations and hence many researchers study numerical methods for solving systems of nonsmooth equations. As numerical methods for solving systems of nonsmooth equations, Newton-like methods are known as efficient numerical methods. However, these methods are not necessarily applied directly to large-scale problems, because these methods need to store matrices. In this paper, we propose a smoothing method which is based on the nonlinear conjugate gradient method and does not store any matrices for solving systems of nonsmooth equations. In addition, we prove the global convergence property of the proposed method under standard assumptions. Finally, we give some preliminary numerical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.