Abstract
Polarizable continuum models (PCMs) are a widely used family of implicit solvent models based on reaction-field theory and boundary-element discretization of the solute/continuum interface. An often overlooked aspect of these theories is that discretization of the interface typically does not afford a continuous potential energy surface for the solute. In addition, we show that discretization can lead to numerical singularities and violations of exact variational conditions. To fix these problems, we introduce the switching/Gaussian (SWIG) method, a discretization scheme that overcomes several longstanding problems with PCMs. Our approach generalizes a procedure introduced by York and Karplus [J. Phys. Chem. A 103, 11060 (1999)], extending it beyond the conductor-like screening model. Comparison to other purportedly smooth PCM implementations reveals certain artifacts in these alternative approaches, which are avoided using the SWIG methodology. The versatility of our approach is demonstrated via geometry optimizations, vibrational frequency calculations, and molecular dynamics simulations, for solutes described using quantum mechanics and molecular mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.