Abstract
Falls can be severe enough to cause disabilities especially to frail populations. Thus, prompt health care provision is essential to prevent and restore any harm. The purpose of this study is to develop a smartphone-based fall detection system that can distinguish between falls and activities of daily living (ADL). The typical fall detection system consists of a sensing component and a notification module. Android devices, equipped with sensors and communication services, are the best candidates for the development of such systems. This work incorporates a threshold based algorithm, whose accuracy is enhanced by a k Nearest Neighbor (kNN) classifier. In addition, this paper proposes the implementation of a personalization and power regulation system. It achieves high fall detection accuracy, (97.53% sensitivity and 94.89% specificity), which is comparable to related works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.