Abstract

It is of great importance to develop the highly efficient fluorescence strategy for rapid/sensitive detection of metam-sodium (MES) in evaluating its residual safety, especially in fresh vegetables. Herein, we prepared an organic fluorophore (thiochrome, TC) and glutathione-capped copper nanoclusters (GSH-CuNCs), and their combination (TC/GSH-CuNCs) was sucessfully employed as a ratiometric fluoroprobe by means of the blue-red dual emission. The fluorescence intensities (FIs) of TC decreased upon the addition of GSH-CuNCs via the fluorescence resonance energy transfer (FRET) process. When fortified at the constant levels of GSH-CuNCs and TC, MES substantially reduced the FIs of GSH-CuNCs, while this was not the case in the FIs of TC except for the prominent red-shift of ∼30 nm. Compared to the previous fluoroprobes, the TC/GSH-CuNCs based fluoroprobe supplied wider linear range of 0.2–500 μM, lower detection limit (60 nM), and satisfactory fortification recoveries (80–107%) for MES in the cucumber samples. Based on the fluorescence quenching phenomenon, a smartphone application was used to output RGB values of the captured images for the colored solution. The smartphone-based ratiometric sensor could be utilized for the visual fluorescent quantitation of MES by virtue of the R/B values in cucumbers, which gave linear range (1–200 μM) and LOD (0.3 μM). By means of blue-red dual-emission fluorescence, the smartphone-based fluoroprobe provides a cost-effective, portable and reliable avenue for the on-site, rapid and sensitive assay of MES's residues in complex vegetable samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call