Abstract

The great popularity of smartphones, together with the increasingly important aim of providing context-aware services, has spurred interest in developing indoor tracking systems. Accurate tracking and localization systems are seen as key services for most context-aware applications. Research projects making use of radio signals detected by radio interfaces and the data captured by sensors commonly integrated in most smartphones have already shown promising and better results than location solutions based on a single data source. In this paper, we present a multi-sensor tracking system built by incrementally integrating state-of-the-art models of the Wi-Fi interface and the accelerometer, gyroscope and magnetometer sensors of a smartphone. Our proposal consists of a simple calibration phase of the tracking system, which involves enabling simultaneous data gathering from all three sensors and the Wi-Fi interface. Taking the Wi-Fi signal model as baseline, four different configurations are evaluated by incrementally adding and integrating the models of the other three sensors. The experimental results reveal a mean error accuracy of 60 cm in the case when the tracking system makes use of all four data sources. Our results also include a spatial characterization of the accuracy and processing power requirements of the proposed solution. Our main findings demonstrate the feasibility of developing accurate localization indoor tracking systems using current smartphones without the need for additional hardware.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call