Abstract

BackgroundThe efficient and timely determination of polymethoxylated flavones (PMFs, primarily nobiletin and tangeretin) and flavanone glycosides (primarily hesperidin) in Citri Reticulatae Pericarpium (CRP) is of paramount importance for the production of CRP and the evaluation of its efficacy. Conventional analytical methods including chromatography-based approaches commonly provide high sensitivity and selectivity, but require bulky equipment and complicated procedures performed by professional technicians and are thus inconvenient in practical applications. Therefore, there is a clear need for portable and miniaturized sensing platforms that can rapidly and simultaneously detect PMFs and hesperidin in CRP product. ResultsA state-of-the-art three-dimensional porous graphene electrode was first fabricated by direct laser scribing of a poly(ether-ether-ketone) (PEEK) film for electrocatalysis of nobiletin, tangeretin and hesperidin. Kinetic analysis was conducted to investigate the reaction mechanisms of these three flavonoids at such prepared PEEK-laser induced graphene (PEEK-LIG) electrodes. Since the as-prepared PEEK-LIG electrodes exhibited high electrocatalytic efficiency towards these three flavonoids, a portable electrochemical sensing platform assembled with a smartphone, a miniatured electrochemical workstation, and an integrated PEEK-LIG microchip was developed. Consequently, the developed portable electrochemical sensing platforms exhibited great sensitivity and low detection limits for both PMFs and hesperidin. More importantly, tests conducted on real CRP extract samples demonstrated that the developed portable electrochemical sensing platform exhibited high validity, high reliability, as well as excellent reproducibility. SignificanceThis is the inaugural report on the portable and simultaneous determination of PMFs and hesperidin in the pericarp of Citrus Reticulata, which may be utilized for differentiating CRP products. Furthermore, the portable and powerful electrochemical sensing platforms developed could also potentially be applied for a wide range of analytes, thanks to their simple and rapid fabrication and determination processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.