Abstract

Hydrazine is an essential chemical in industries, but its high toxicity poses great threats to human health and environmental safety. Hence, it is of great significance to monitor the hydrazine in environment. In this work, we presented a chromogenic and fluorogenic dual-mode sensor RA for the detection of hydrazine based on nucleophilic substitution reaction. A linear relationship was obtained between the fluorescence intensity and the concentrations of N2H4 ranging from 0 to 35 μM (R2 = 0.9936). The sensor can determine hydrazine with fast response (within 12 min), low limit of detection (0.129 μM) and high selectivity. RA was successfully used to detect N2H4 in real water samples with good recoveries and the results corresponded to the standard method. Furthermore, the sensor-coated portable test papers were fabricated, which can visually quantify hydrazine solutions with obvious fluorescence transformation from colorless to red. Moreover, RA-loaded papers were used to create a smartphone-adaptable RGB values analytical method for quantitative N2H4 detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.