Abstract

Micro-grids offer a cost-effective approach to providingreliable power supply in isolated and disadvantaged communities. These communities present a special case where access to national power networks is either non-existent or intermittent due to load-shedding to provision urban areas and/or due to high interconnection costs. By necessity, such micro-grids rely on renewable energy sources that are variable and so only partly predictable. Ensuring reliable power provisioning and billing must therefore be supported by demand management and fair-billing policies. Furthermore, since trusted centralized grid management is not always possible, using a distributed model offers a viable solution approach. However, such a distributed system may be subject to subversion attacks aimed at power theft. In this paper, we present a novel and innovative distributed architecture for power distribution and billing on micro-grids. The architecture is designed to operate efficiently over a lossy communication network, which is an advantage for disadvantaged communities. Since lossy networks are undependable, differentiating system failures from adversarial manipulations is important because grid stability is to a large extent dependent on user participation. To this end, we provide a characterization of potential adversarial models to underline how these can be differentiated from failures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call