Abstract
Electrical energy demands requested from downstream sectors of a smart grid are continuously increasing. One way to meet those demands is to monitor and manage industrial, commercial as well as residential electrical appliances efficiently in response to demand response programs. This study aims to develop a smart Home Energy Management System (HEMS) that acts as an intelligent electricity energy audit based on Non-Intrusive Load Monitoring (NILM) technology. NILM instead of HEMS conducted as a benchmark in a field of interest is able to infer appliance-level power consumption without an intrusive deployment of smart e-meters installed and attached on monitored individual electrical appliances. To NILM as a load classification task, a Radial Basis Function-Artificial Neural Network (RBF-ANN) hybridized with k-Means clustering is developed and used to identify individual electrical appliances monitored in a realistic residential environment. The experimentation reported in this study shows that, the presented HEMS utilizing the proposed k-Means clustering-hybridized RBF-ANN-based NILM as an intelligent electricity energy audit gave an overall load classification rate of 72.57%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.