Abstract

During an epidemic, the transportation of patients to emergency departments and the monitoring of their physiological parameters pose significant challenges in this critical scenario. Swift and efficient diagnosis has the potential to rescue the lives of these patients. The objective is accomplished through the utilization of deep learning to categorize information into emergencies, prioritizing its dispatch. In this article, we present a sophisticated emergency system that employs deep learning to swiftly transmit vital information from emergency patients to the hospital that can provide the highest quality healthcare for these individuals. The fusion method integrates data obtained and refined from patients' electronic medical records with data acquired by the wireless medical sensor network during the transportation phase. Subsequently, the process of choosing the parameters is employed as inputs to the learning model. The data gathered and educational outcomes, such as emergency notifications, are transmitted through Wi-Fi and 5G devices in our sophisticated system. The proposed contribution achieves a 98% accuracy with a runtime of 1.53 seconds. This discovery demonstrates the efficacy of our system, particularly in the context of epidemic situations such as COVID-19.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.