Abstract
The detective quantum efficiency (DQE) is a metric widely used in radiography to quantify system performance and as a surrogate measure of patient "dose efficiency." It has been applied previously to fluoroscopic systems with the introduction of a temporal correction factor. Calculation of this correction factor relies on measurements of the temporal modulation transfer function (MTF). However, the temporal MTF is often exposure-rate dependent, violating a necessary Fourier linearity requirement. The authors show that a Fourier analysis is appropriate for fluoroscopic systems if a "small-signal" approach is used. Using a semitransparent edge, a lag-corrected DQE is described and measured for an x-ray image intensifier-based fluoroscopic system under continuous (non-pulsed) exposure conditions. It was found that results were equivalent for both rising and falling-edge profiles independent of edge attenuation when effective attenuation was in the range of 0.1-0.6. This suggests that this range is appropriate for measuring the small-signal temporal MTF. In general, lag was greatest at low exposure rates. It was also found that results obtained using a falling-edge profile with a radiopaque edge were equivalent to the small-signal results for the test system. If this result is found to be true generally, it removes the need for the small-signal approach. Lag-corrected DQE values were validated by comparison with radiographic DQE values obtained using very long exposures under the same conditions. Lag was observed to inflate DQE measurements by up to 50% when ignored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.