Abstract

Although thermoacoustic-Stirling hybrid engines (TASHE) have not been previously coupled to transducers to produce useful electric power, they have demonstrated high thermal-to-acoustic power conversion efficiencies. Electric generation is investigated by coupling a small TASHE to an electrodynamic linear alternator with an emphasis on satisfying NASA’s need for a small, lightweight, efficient electric generator for deep-space missions. The combined goals of low mass and high efficiency require the TASHE to have the largest acoustic power output possible from a minimum enclosed volume, which imposes a relation between various impedances of the TASHE’s lumped-element loop. The design of the TASHE and alternator used in this generator will be reviewed, performance data presented, and possible improvements discussed. [Work supported by NASA.]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.