Abstract

Eukaryotic rRNAs possess numerous post-transcriptionally modified nucleotides. The most abundant modifications, 2'-O-ribose methylation and pseudouridylation, occur in the nucleolus during rRNA processing. The nucleolus contains a large number of small nucleolar RNAs (snoRNAs) most of which can be classified into two distinct families defined by conserved sequence boxes and common associated proteins. The C and D box-containing snoRNAs are associated with fibrillarin, and most of them function as guide RNAs in site-specific ribose methylation of rRNAs. The nucleolar function of the other class of snoRNAs, which share box H and ACA elements and are associated with a glycine- and arginine-rich nucleolar protein, Gar1p, remains elusive. Here we demonstrate that the yeast Saccharomyces cerevisiae Gar1 snoRNP protein plays an essential and specific role in the overall pseudouridylation of yeast rRNAs. These results establish a novel function for Gar1 protein and indicate that the box H/ACA snoRNAs, or at least a subset of these snoRNAs, function in the site-specific pseudouridylation of rRNAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.