Abstract

Organic cathode materials show excellent prospects for sodium-ion batteries (SIBs) owing to their high theoretical capacity. However, the high solubility and low electrical conductivity of organic compounds result in inferior cycle stability and rate performance. Herein, an extended conjugated organic small molecule is reported that combines electroactive quinone with piperazine by the structural designability of organic materials, 2,3,7,8-tetraamino-5,10-dihydrophenazine-1,4,6,9-tetraone (TDT). Through intermolecular condensation reaction, many redox-active groups C═O and extended conjugated structures are introduced without sacrificing the specific capacity, which ensures the high capacity of the electrode and enhances rate performance. The abundant NH2 groups can form intermolecular hydrogen bonds with the C═O groups to enhance the intermolecular interactions, resulting in lower solubility and higher stability. The TDT cathode delivers a high initial capacity of 293 mAh g-1 at 500mA g-1 and maintains 90 mAh g-1 at an extremely high current density of 70 A g-1. The TDT || Na-intercalated hard carbon (Na-HC) full cells provide an average capacity of 210 mAh g-1 during 100 cycles at 500mA g-1 and deliver a capacity of 120 mAh g-1 at 8 A g-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.