Abstract

Fluorescence monitoring of ATP in different organelles is now feasible with a few biosensors developed, which, however, show low sensitivity, limited biocompatibility, and accessibility. Small-molecule ATP probes that alleviate those limitations thus have received much attention recently, leading to a few ATP probes that target several organelles except for the nucleus. We disclose the first small-molecule probe that selectively detects nuclear ATP through reversible binding, with 25-fold fluorescence enhancement at pH 7.4 and excellent selectivity against various biologically relevant species. Using the probe, we observed 2.1-3.3-fold and 3.9-7.8-fold higher nuclear ATP levels in cancerous cell lines and tumor tissues compared with normal cell lines and tissues, respectively, which are explained by the higher nuclear ATP level in the mitosis phase. The probe has great potential for studying nuclear ATP-associated biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call