Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid (CA) is an essential viral component of HIV-1 infection and an attractive therapeutic target for antivirals. Here, we report that a small molecule, ACAi-028, inhibits HIV-1 replication by targeting a hydrophobic pocket in the N-terminal domain of CA (CA-NTD). ACAi-028 is 1 of more than 40 candidate anti-HIV-1 compounds identified by in silico screening and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Our binding model showed that ACAi-028 interacts with the Q13, S16, and T19 amino acid residues, via hydrogen bonds, in the targeting pocket of CA-NTD. Using recombinant fusion methods, TZM-bl, time-of-addition, and colorimetric reverse transcriptase (RT) assays, the compound was found to exert anti-HIV-1 activity in the early stage between reverse transcription and proviral DNA integration, without any effect on RT activity in vitro, suggesting that this compound may affect HIV-1 core disassembly (uncoating) as well as a CA inhibitor, PF74. Moreover, electrospray ionization mass spectrometry (ESI-MS) also showed that the compound binds directly and noncovalently to the CA monomer. CA multimerization and thermal stability assays showed that ACAi-028 decreased CA multimerization and thermal stability via S16 or T19 residues. These results indicate that ACAi-028 is a new CA inhibitor by binding to the novel hydrophobic pocket in CA-NTD. This study demonstrates that a compound, ACAi-028, targeting the hydrophobic pocket should be a promising anti-HIV-1 inhibitor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.