Abstract

The question of whether the activation of SOCs (store-operated Ca(2+) channels) requires the whole or part of the ER (endoplasmic reticulum) has not been fully resolved. The role of a putative sub-compartment of the ER in SOC activation in liver cells was investigated using ectopically expressed TRPV1 (transient receptor potential vanilloid 1), a non-selective cation channel, and TDCA (taurodeoxycholic acid), an activator of SOCs, to release Ca(2+) from different regions of the ER. TRPV1 was expressed in the ER and in the plasma membrane. The amount of Ca(2+) released from the ER by a TRPV1 agonist, measured using fura-2, was the same as that released by a SERCA (sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase) inhibitor, indicating that TRPV1 agonist-sensitive stores substantially overlap with SERCA inhibitor-sensitive stores. In contrast with SERCA inhibitors, TRPV1 agonists did not activate store-operated Ca(2+) entry. These findings were confirmed by patch-clamp recording. Using FFP-18, it was shown that SERCA inhibitors release Ca(2+) from the ER located closer to the plasma membrane than the region from which TRPV1 agonists release Ca(2+). In contrast with SERCA inhibitors, TRPV1 agonists did not induce a redistribution of STIM1 (stromal interaction molecule 1). TDCA caused the release of Ca(2+) from the ER, which was detected by FFP-18 but not by fura-2, and a redistribution of STIM1 to puncta similar to that caused by SERCA inhibitors. It is concluded that in liver cells, Ca(2+) release from a small component of the ER located near the plasma membrane is required to induce STIM1 redistribution and SOC activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.