Abstract

BackgroundIn Drosophila, male flies require the expression of the male-specific Fruitless protein (FRUM) within the developing pupal and adult nervous system in order to produce male courtship and copulation behaviors. Recent evidence has shown that specific subsets of FRUM neurons are necessary for particular steps of courtship and copulation. In these neurons, FRUM function has been shown to be important for determining sex-specific neuronal characteristics, such as neurotransmitter profile and morphology.ResultsWe identified a small cohort of FRUM interneurons in the brain and ventral nerve cord by their co-expression with the transcription factor Engrailed (En). We used an En-GAL4 driver to express a fruM RNAi construct in order to selectively deplete FRUM in these En/FRUM co-expressing neurons. In courtship and copulation tests, these males performed male courtship at wild-type levels but were frequently sterile. Sterility was a behavioral phenotype as these En-fruMRNAi males were less able to convert a copulation attempt into a stable copulation, or did not maintain copulation for long enough to transfer sperm and/or seminal fluid.ConclusionsWe have identified a population of interneurons necessary for successful copulation in Drosophila. These data confirm a model in which subsets of FRUM neurons participate in independent neuronal circuits necessary for individual steps of male behavior. In addition, we have determined that these neurons in wild-type males have homologues in females and fru mutants, with similar placement, projection patterns, and neurochemical profiles.

Highlights

  • In Drosophila, male flies require the expression of the male-specific Fruitless protein (FRUM) within the developing pupal and adult nervous system in order to produce male courtship and copulation behaviors

  • Male-specific products of the fruitless gene (FRUM) neurons are distributed throughout the brain, ventral nerve cord, and peripheral nervous system, in regions previously implicated in male courtship behavior [18,19,20,21,22,23]

  • Small groups of FRUM neurons are distributed throughout the brain and ventral nerve cord

Read more

Summary

Introduction

In Drosophila, male flies require the expression of the male-specific Fruitless protein (FRUM) within the developing pupal and adult nervous system in order to produce male courtship and copulation behaviors. Recent evidence has shown that specific subsets of FRUM neurons are necessary for particular steps of courtship and copulation. In these neurons, FRUM function has been shown to be important for determining sex-specific neuronal characteristics, such as neurotransmitter profile and morphology. Based on the expression pattern of FRUM and the fact that individual steps of courtship and copulation behavior are differentially affected in specific fru mutant genotypes, FRUM function fits both necessary and sufficiency criteria as a regulator of the development and function of neurons that participate exclusively in neuronal circuits used during male courtship and copulation behavior [1,3,6]. Neurons with roles in some aspects of courtship behaviors have been identified, the role of most FRUM-expressing neurons in male-specific behaviors, including later behaviors like copulation, has not been established

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.