Abstract

Cleistogamy, self-pollination within closed flowers, can help maintain seed purity, accelerate breeding speed, and aid in the development of ornamental flowers. However, the mechanism underlying petal closing/opening behavior remains elusive. Here, we found that a Brassica napus petal closing/opening behavior was inherited in a Mendelian manner. Fine mapping and positional cloning experiments revealed that the Mendelian factor originated from a short (29.8 kb) inversion mediated by BnDTH9 miniature inverted-repeat transposable elements (MITEs) on chromosome C03. This inversion led to tissue-specific gene promoter exchange between BnaC03.FBA (BnaC03G0156800ZS encoding an F-Box-associated domain-containing protein) and BnaC03.EFO1 (BnaC03G0157400ZS encoding an EARLY FLOWERING BY OVEREXPRESSION 1 protein) positioned near the respective inversion breakpoints. Our genetic transformation work demonstrated that the cleistogamy originated from high tissue-specific expression of the BnaC03.FBA gene caused by promoter changes due to the MITE-mediated inversion. BnaC03.FBA is involved in the formation of an SCF (Skp1-Cullin-F-box) complex, which participates in ubiquitin-mediated protein targeting for degradation through the ubiquitin 26S-proteasome system. Our results shed light on a molecular model of petal-closing behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.